

Outline

Oct. 25 2012

Joe Grange Nulnt 2012

- I. MiniBooNE and $\overline{\nabla}$ -mode beam
 - wrong-sign background
- 2. Neutral-current elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
- 3. Charged-current quasi-elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
 - 4. Combined measurements
 - 5. Summary

7

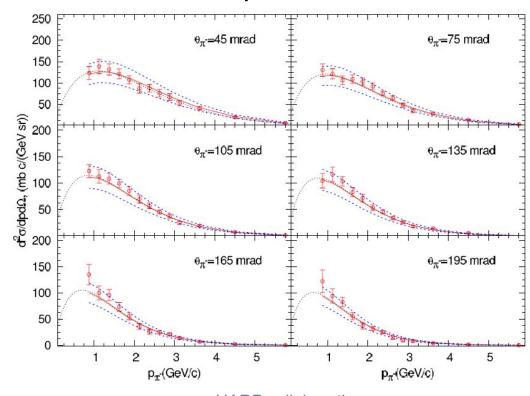
Outline

Oct. 25 2012

Joe Grange NuInt 2012

- I. MiniBooNE and \overline{V} -mode beam
 - wrong-sign background
- 2. Neutral-current elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
- 3. Charged-current quasi-elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
 - 4. Combined measurements
 - 5. Summary

Flux prediction

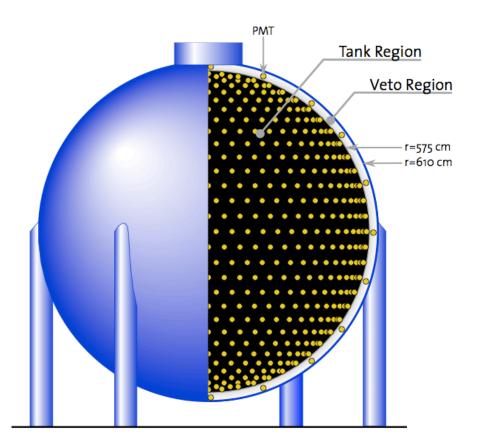


Joe Grange NuInt 2012

Nulnt 2012 Oct. 25 2012

- Secondary π production based exclusively on external data - no in situ tuning
 - both π^- and π^+
- These dedicated data allow for absolute MB σ measurements

π^{-} production


HARP collaboration, Eur. Phys. J. C **52** 29 (2007)

Detector

Joe Grange NuInt 2012 Oct. 25 2012

- Primarily a Cherenkov detector, best at reconstructing leptons.
- However we've shown late light can be used to reconstruct protons well (NCE measurement more later).

Nucl. Instr. Meth. A599, 28 (2009)

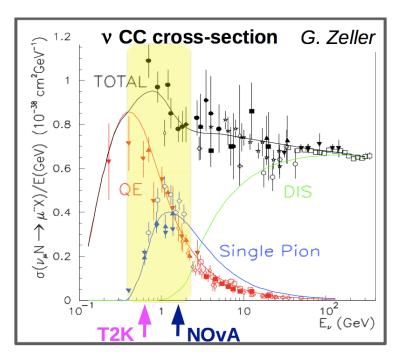
NUANCE

Joe Grange Nulnt 2012 Oct. 25 2012

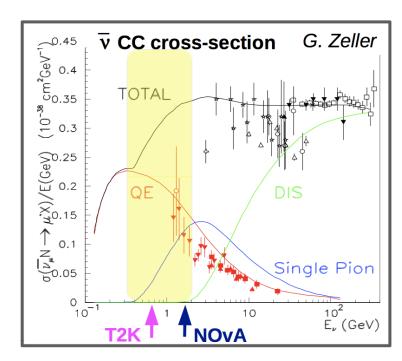
Use Llewelyn-Smith expressions for elastic scattering on free nuclei

Phys. Rep. 3, 261 (1972)

- Relativistic Fermi Gas (RFG) model: bound nucleon targets treated as independent particles subject to binding energy and global Fermi momentum Nucl. Phys. B43, 605 (1972)
 - FF values set by (e,e') scattering data
 - introduce empirical Pauli blocking scale K
- Single π production: Rein-Sehgal model


Ann. Phys. 133, 79 (1981)

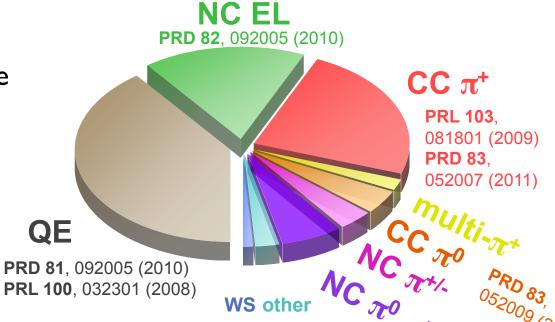
Pre-MiniBooNE σ's



Joe Grange Nulnt 2012 Oct. 25 2012

 Need as much input as possible for successful oscillation program

- No sub-GeV anti-neutrino σ's
 - vital for future CPV measurements
- First CC + NCE sub-GeV antineutrino measurements today!



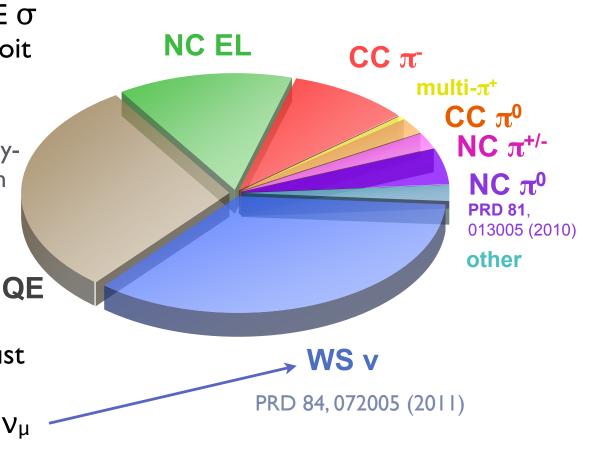
V-mode rate

Joe Grange Nulnt 2012 Oct. 25 2012

 MiniBooNE has published ~90% of the total V-mode rate,

- Lots of interest: more than 500 citations from these papers
- As you heard, we're still extracting info.
 from V-mode data (M.Tzanov's talk)

∇-mode rate

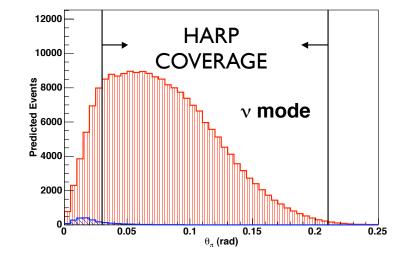


Joe Grange Nulnt 2012 Oct. 25 2012

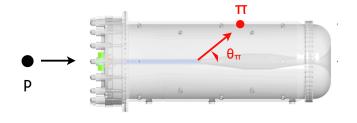
 To complete MiniBooNE σ program, must fully exploit unprecedented anti-V statistics

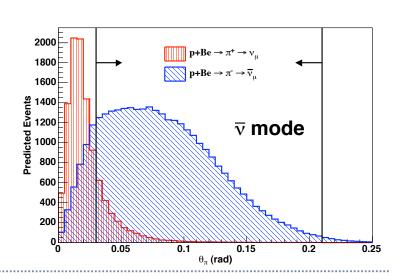
- 1.0 x 10²¹ POT in a mostly-unexplored energy region

 Before able to make precision anti-V_μ G's, must deal with largest background: wrong-sign V_μ



Wrong-sign background




Joe Grange Nulnt 2012 Oct. 25 2012

- V_μ parent π⁺ production in anti-V mode ("wrong signs") mostly not covered by HARP (right)
 - overall rate highly uncertain!

- Moreover, accepted π angle a mild function of energy
 - need to check flux spectrum!

Wrong-sign measurements

Joe Grange

Nulnt 2012

Oct. 25 2012

- Other detectors employ magnetic field to separate V_{μ} / anti- V_{μ}
 - MiniBooNE unmagnetized, must use statistical techniques
- General strategy: isolate samples sensitive to V_{μ} beam content, apply measured σ 's from neutrino-mode data (CCQE, CC π ⁺)

$$\frac{\mathrm{Rate^{data}}}{\mathrm{Rate^{sim}}} = \frac{\Phi^{\mathrm{true}} \times \sigma^{\mathrm{meas}}}{\Phi^{\mathrm{sim}} \times \sigma^{\mathrm{meas}}} = \frac{\Phi^{\mathrm{true}}}{\Phi^{\mathrm{sim}}}$$

• Level of data-simulation agreement then reflects accuracy of (highly-uncertain) V_{μ} flux prediction

Three V_{μ} flux measurements

Joe Grange

Nulnt 2012

Oct. 25 2012

- ▶ Three samples isolated and analyzed:
 - I. $CC\pi^+$ sample

anti-V induced π^- absorbed in the medium (does not decay), so by requiring 1 μ , 2 decay electrons (one each from μ and π^+ decay), get > 80% purity sample of ν_{μ} events

- 2. Scale samples consisting of μ -only and μ +e for ν_{μ} , anti- ν_{μ} content ν_{μ} CC events have 8% capture rate in mineral oil
- 3. Backward scattering region in CCQE sample

anti-V CCQE expected to be much more forward-going

Three V_{μ} flux measurements

Joe Grange

Nulnt 2012

Oct. 25 2012

- ▶ Three samples isolated and analyzed:
 - I. $CC\pi^+$ sample

anti-\

anti-V induced π^- absorbed in the medium (does not decay), so by requiring 1μ , 2 decay electrons (one each from μ and π^+ decay), get > 80% purity sample of ν_{μ} events

2. Scale samples consisting of μ -only and μ +e for ν_{μ} , anti- ν_{μ} content

 ν_{μ} CC events have 8% capture rate in mineral oil

Method #3 model dependent!

Details of forward-going anti-V assumption

3. Ba not well understood, results NOT USED

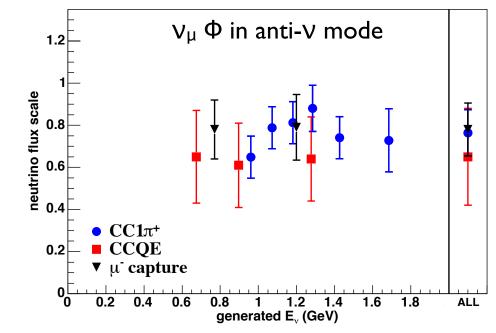
to extract anti-V cross sections

Once σ 's better known, could be a

powerful technique

mple

d-going

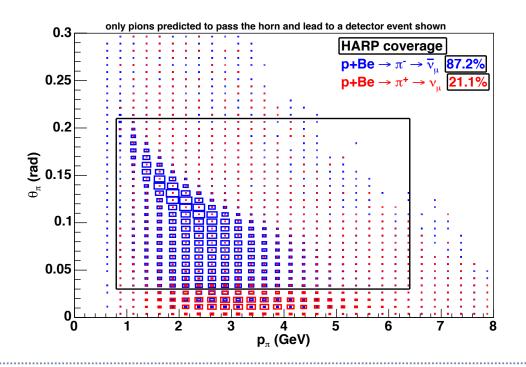

Wrong-sign flux results

Oct. 25 2012

Joe Grange NuInt 2012

- ▶ Results binned in energy as finely as allowed by statistics
 - nominal prediction ~20% high in normalization, simulated spectrum appears adequate

• predicted V_{μ} flux in anti-V mode constrained by < 15%



Last word on V-mode flux

Joe Grange Nulnt 2012 Oct. 25 2012

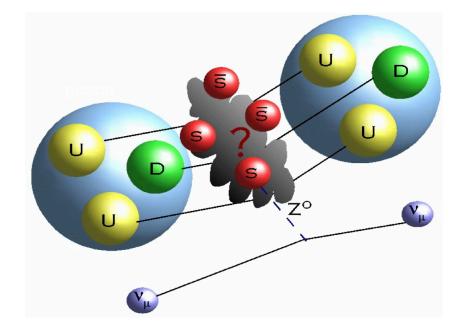
- Wrong signs constrained to a sub-dominant uncertainty in all anti-V mode analyses
- ▶ Let's move to anti-V analyses, where we can exploit HARP data

"right sign" \overline{V}_{μ} flux well-constrained by HARP data

Joe Grange

- I. MiniBooNE and ∇-mode beam- wrong-sign background
- 2. Neutral-current elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
- 3. Charged-current quasi-elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
 - 4. Combined measurements
 - 5. Summary

(Anti) neutrino-nucleon neutral current elastic (NCE) scattering



Joe Grange NuInt 2012 Oct. 25 2012

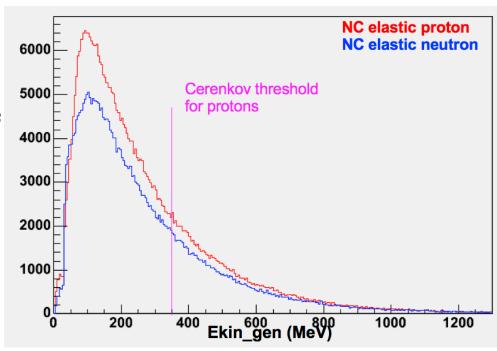
Most fundamental neutral current probe of the nucleon

▶ Cleanly offers sensitivity to hadronic side of elastic

interactions

▶ Vµ NCE analysis

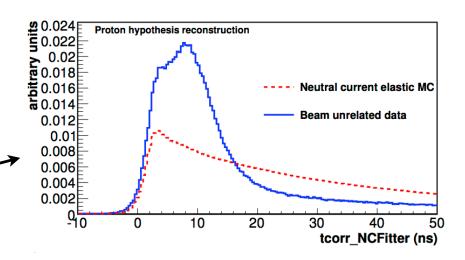
PRD 82, 092005 (2010)


Nucleon reconstruction

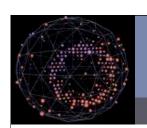
Joe Grange Nulnt 2012 Oct. 25 2012

- We measure sum of n+p NC interactions: identical isotropic scintillation signature for bulk of spectra
- ▶ Some separation above Cherenkov threshold (350 MeV)

- Dedicated fitter identifies kinematics via PMT hit charge and time-likelihood maximization
 - assumes outgoing N is proton
 - position res. ~0.7 m
 - energy res. ~20%



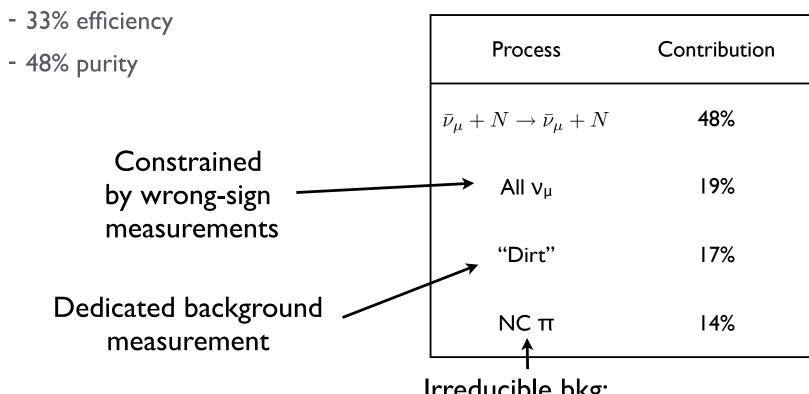
Event selection



Joe Grange Nulnt 2012 Oct. 25 2012

- I. One subevent
 - \rightarrow removes decaying particles (μ , π)
- 2. In time with V beam
- 3. Low veto activity
 - ensures containment, rejects incoming particles
- 4. Signal PMT hits > 12
 - reconstructible event
- 5. Cut on time $ln(L_e/L_p)$
 - rejects beam-unrelated e's
- 6. Reco. energy < 650 MeV
 - ▶ rejects high E backgrounds
- 7. 5m fiducial volume

Exp't def'n: 0 μ 's, 0 FS π 's, any # of nucleons

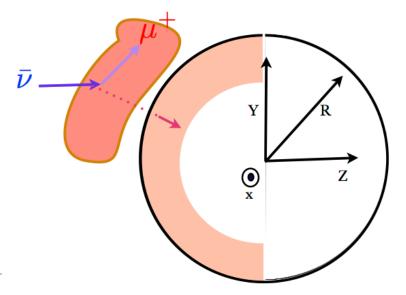


NCE sample

Joe Grange Nulnt 2012 Oct. 25 2012

▶ 6 lk events pass selection

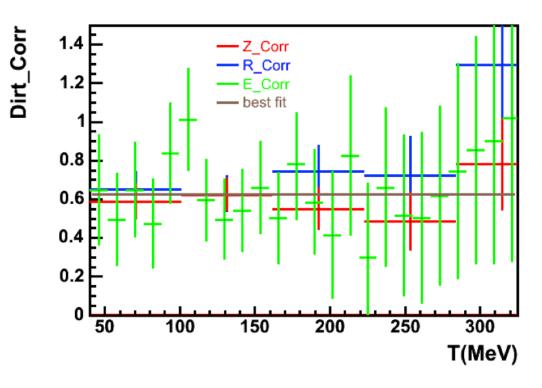
Irreducible bkg: $NC\pi$ with no final-state π



Dirt background

Joe Grange Nulnt 2012 Oct. 25 2012

- "Dirt": events produced external to the detector, do not deposit energy in veto, lead to PMT activity
- Tend to pile up at:
 - high radius
 - upstream half of detector
 - low energy
- Form dirt-enriched samples based on these correlations
- Performed in V-mode NCE measurement as well, need to repeat for \overline{V} -mode beam



Dirt background

Joe Grange Nulnt 2012 Oct. 25 2012

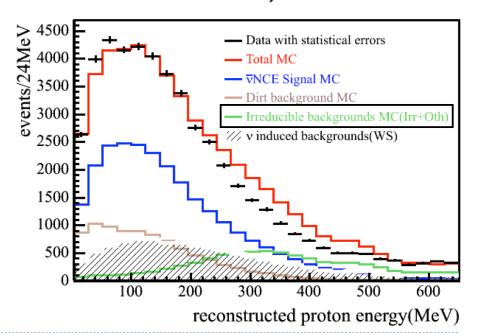
- Many, many measurements:
 - 10 energy bins in the beam direction (Z_corr) and radius (R_corr)
 - fit the energy spectrum directly (E_corr)
 - Results consistent with
 v mode NCE dirt fits
 - final uncertainty on dirt events less than 10%

Irreducible background

Oct. 25 2012

Joe Grange NuInt 2012

• Irreducible: NC π with no final-state π , e.g.:


- Rely on MC to predict this background
 - 30 40% errors assigned
- Will also report what was subtracted to allow model-independent comparisons
 - following previous MiniBooNE conventions

$$\overline{v} p \rightarrow \overline{v} p \pi^{\circ}$$

$$\overline{v} p \rightarrow \overline{v} n \pi^{\circ}$$

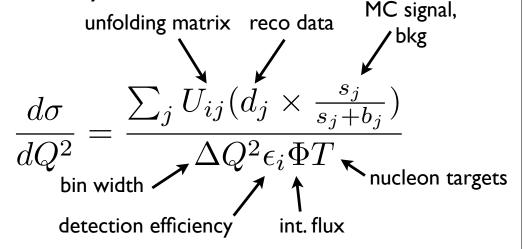
$$\overline{v} n \rightarrow \overline{v} n \pi^{\circ}$$

$$\overline{v} n \rightarrow \overline{v} p \pi^{\circ}$$

Cross-section calculation

Joe Grange

Nulnt 2012


Oct. 25 2012

Main result is $d\sigma/dQ^2$. Can calculate Q^2 based on nucleon energy assuming interaction with an independent, at-rest target

$$Q^2 = 2m_N \sum T_N$$

Notice! Reconstructed solely on hadronic activity, CCQE Q² reconstructed solely on leptonic activity

• Simple σ calculation from here:

24

Systematic uncertainties

Joe Grange Nulnt 2012 Oct. 25 2012

Most uncertainties on parameters, processes that affect the final measurement evaluated through "many universe" MC method:

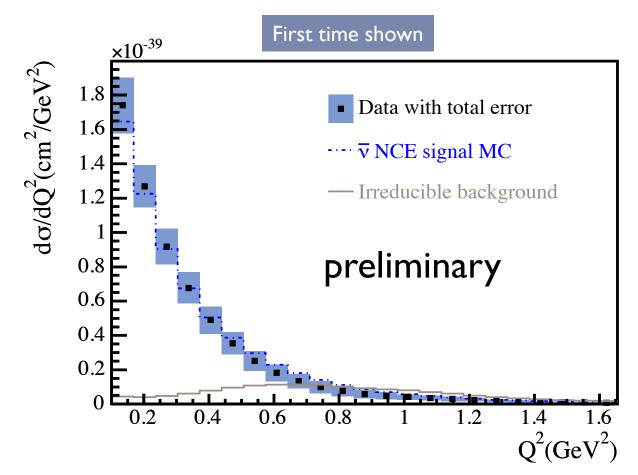
$$\frac{d\sigma}{dQ^2}^k = \frac{\sum_j U_{ij}^k (d_j \times \frac{s_j^k}{s_j^k + b_j^k})}{\Delta Q^2 \epsilon_i^k \Phi^k T}$$

k: parameter/process excursion from "best-guess"

• Difference of these alternate σ's from central-value sets systematic uncertainty

Error source	Normalization uncertainty (%)
anti-∨ flux	6
Backgrounds	6
Detector	15
Unfolding	7
Total (includes correlations)	21

Uncertainty dominated by light propagation model

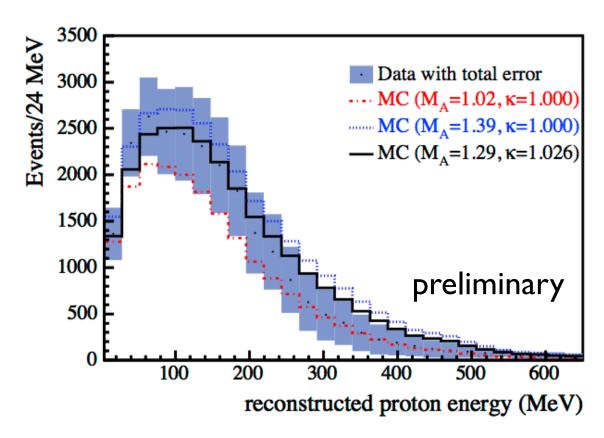


Results

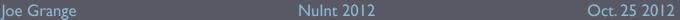
Oct. 25 2012

Joe Grange NuInt 2012

• Adequate agreement with MC prediction tuned to ν_{μ} CCQE data



More model comparisons



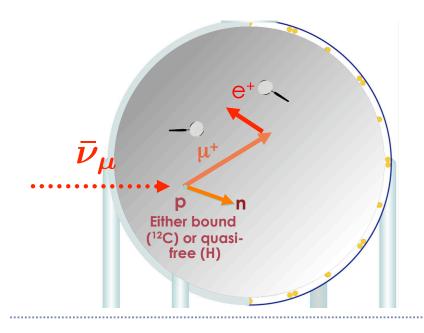
Oct. 25 2012

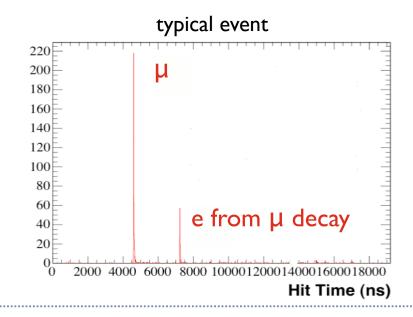
Joe Grange NuInt 2012

Not much shape sensitivity to model parameters

- I. MiniBooNE and ∇-mode beam
 - wrong-sign background
- 2. Neutral-current elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
- 3. Charged-current quasi-elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
 - 4. Combined measurements
 - 5. Summary

28

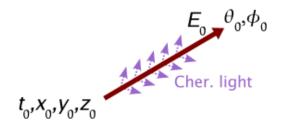



\overline{V}_{μ} CCQE

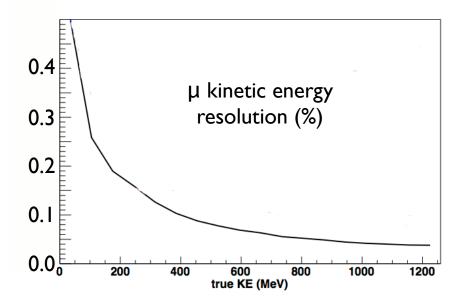
Joe Grange Nulnt 2012 Oct. 25 2012

- Complementary to the NCE analysis with exclusive hadronic reconstruction, MiniBooNE CCQE is based exclusively on µ kinematics (no attempt to recover hadronic activity)
- $\overline{\nu}_{\mu}$ CCQE only involves protons: MiniBooNE medium CH₂, so sample is mix of bound and free scattering

\overline{V}_{μ} CCQE reconstruction



Joe Grange


Nulnt 2012

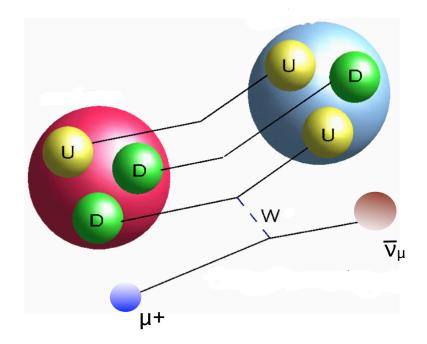
Oct. 25 2012

 Similar to proton NCE fitter, µ kinematics identified by fitting PMT hit topology and timing

 μ's leave distinctive Cherenkov ring, reconstruction performs well

This motivates exploitation of our large statistics to map the σ as a function of μ kinematics: main result $d^2\sigma/dT_{\mu}d(\cos\theta_{\mu})$

NIM A608, 206 (2009)



\overline{V}_{μ} CCQE selection

Joe Grange NuInt 2012

- I. Two subevents
 - consistent with prompt μ + decay e
- 2. In time with V beam
- 3. $T_{\mu} > 200 \text{ MeV}$
 - removes beam-unrelated e's
- 4. 2nd subevent vertex consistent decay of prompt particle
 - based on observed µ kinematics
- 5. μ /e separation PID
 - single-pion bkgs look more e-like
- 6. 5m fiducial volume
- 7. Low veto activity
 - containment + nothing coming in

Oct. 25 2012

Identical selection to V_{μ} CCQE analysis: single μ , 0 π , any # nucleons

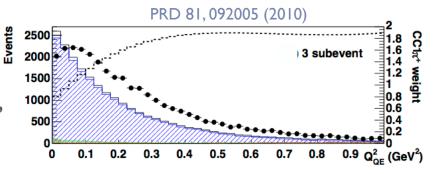
\overline{V}_{μ} sample composition

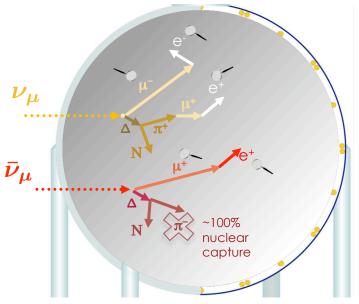
Joe Grange Nulnt 2012 Oct. 25 2012

- ▶ 70k events: 60% $\overline{\nu}_{\mu}$ CCQE purity
 - 43% ¹²C events, 17% H₂
- ▶ 30% efficiency

- Largest background:ν_μ CCQE
 - measured!
- Next largest: CCπ⁻ (next)

Interaction channel	Contribution (%)
$ar{ar{ u}_{\mu}+p ightarrow\mu^{+}+n} ext{ (bound } p)$	43.2
$ar{ u}_{\mu} + p ightarrow \mu^{+} + n \; ext{(quasi-free } p)$	17.1
$\nu_{\mu} + n \rightarrow \mu^{-} + p$	16.6
$\bar{\nu}_{\mu} + N \rightarrow \mu^{+} + N + \pi^{-} \text{ (resonant)}$	10.4
$ u_{\mu} + N \rightarrow \mu^{-} + N + \pi^{+} \text{ (resonant)} $	3.8
$\bar{\nu}_{\mu} + A \rightarrow \mu^{+} + A + \pi^{-} \text{ (coherent)}$	3.3
$ar{ u}_{\mu}+N ightarrow\mu^{+}+N+\pi^{0}$	2.8
$ar{ u}_{\mu} + p ightarrow \mu^{+} + \Lambda^{0}$	
$ar{ u}_{\mu} + n ightarrow \mu^+ + \Sigma^-$	2.0
$ar{ u}_{\mu}+p ightarrow\mu^{+}+\Sigma^{0}$	
Others	0.7

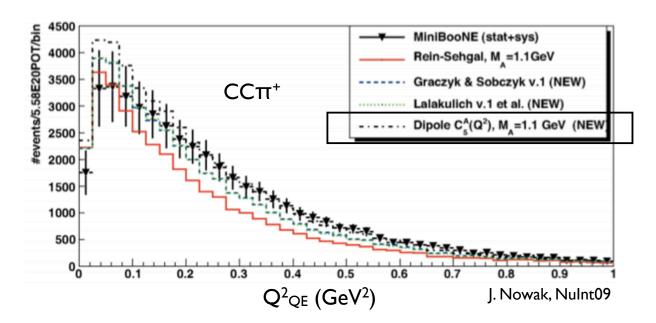

CCT-


Joe Grange NuInt 2012

- Single- π bkg for ν_{μ} CCQE analysis: ID'd CC π^{+} events using 2-Michel tag
 - empirically constrained their rate + shape, apply to bkg prediction

Not possible in anti-ν mode: single-pion mechanism CCIπ⁻, stopped π⁻ absorbed in medium ~100%, 2nd Michel not produced

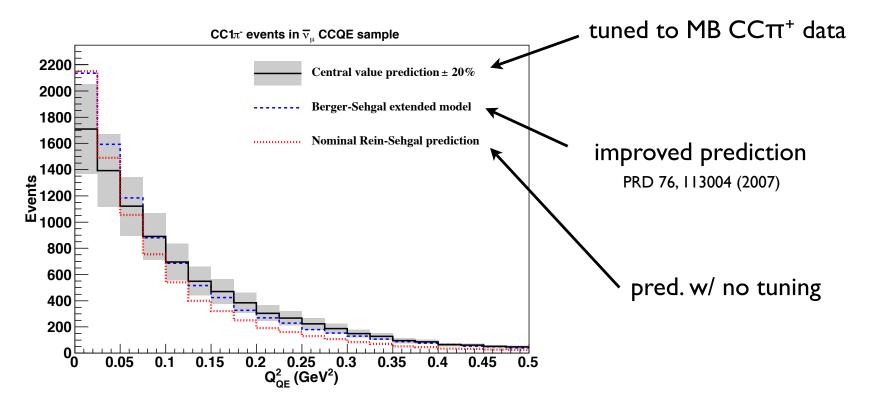
Oct. 25 2012


CCT-

Oct. 25 2012

Joe Grange Nulnt 2012

- Apply the same constraint measured in $CC\pi^+$ sample to $CC\pi^-$ events
 - uncertain extrapolation!
- Can do better: use improved π -production model that agrees with MB CC π^+ data as cross-check
 - improvements include muon mass effects (absent in Rein-Sehgal)

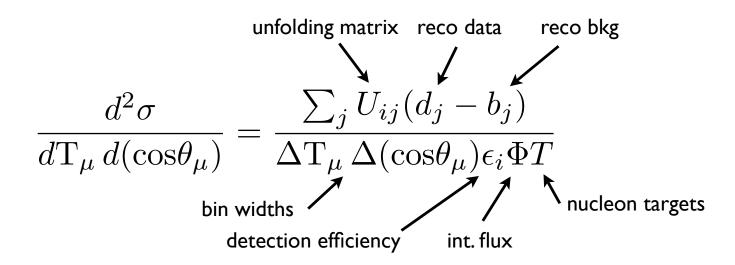


CCTT-

Joe Grange Nulnt 2012 Oct. 25 2012

▶ Comparison to MiniBooNE predictions

▶ Level of agreement suggests 20% uncertainty is sufficient


Cross-section calculation, uncertainties

Joe Grange NuInt

Nulnt 2012 Oct. 25 2012

• Calculation identical to V_{μ} CCQE σ analysis

▶ Same procedure to eval. measurement uncertainties as NCE

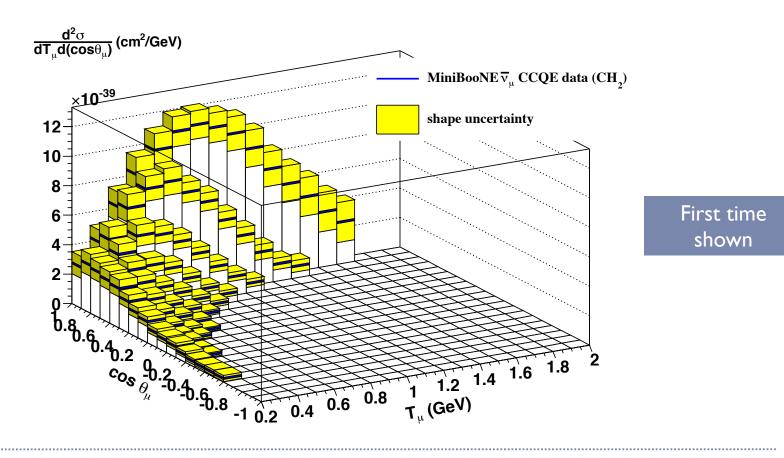
Uncertainty summary

Joe Grange Nulnt 2012 Oct. 25 2012

Leading uncertainties:

- flux: roughly due in equal parts to HARP π data, beam modeling
- backgrounds, roughly split between wrong sign CCQE & CC π -production

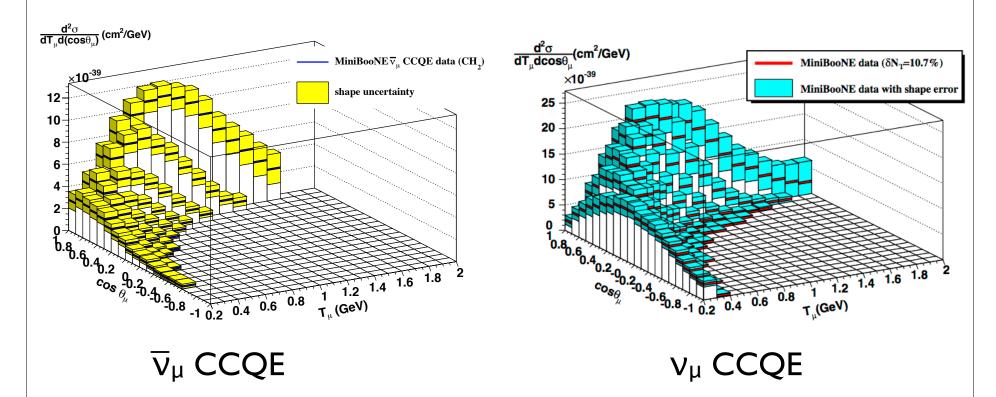
Error source	Normalization uncertainty (%)
anti-∨ flux	9
Backgrounds	9
Detector	5
Unfolding	2
Total (includes correlations)	14


Results: double-differential on CH₂

Oct. 25 2012

Joe Grange NuInt 2012

Least model-dependent measurement possible with MiniBooNE data.
 Independent of CCQE interaction assumptions



Results: double-differential on CH₂

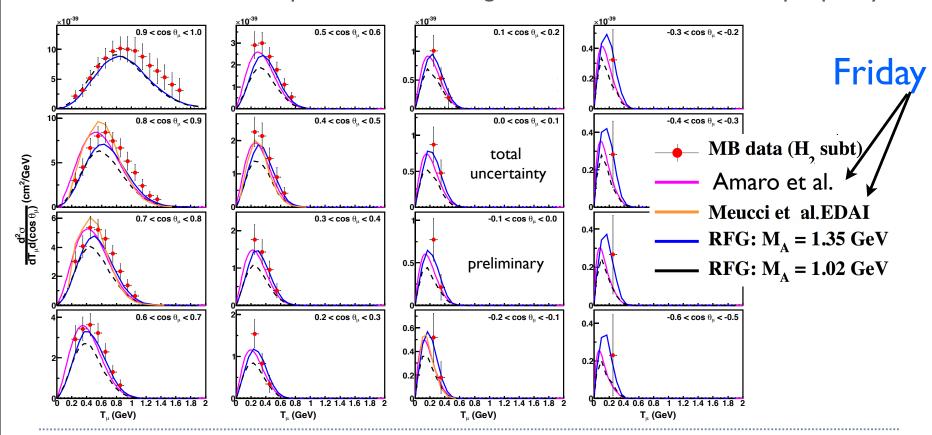
Joe Grange Nulnt 2012 Oct. 25 2012

• $\overline{\nu}_{\mu}$ CCQE much more forward-going compared to ν_{μ}

$\overline{\nu}_{\mu}$ CCQE σ 's on ¹²C only

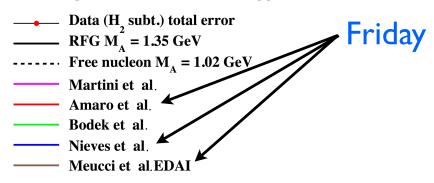
Joe Grange Nulnt 2012 Oct. 25 2012

- ▶ To facilitate comparisons with theoretical calculations, CCQE on hydrogen subtracted to form 12 C-only σ (using L-S M_A = 1.02 ± 0.02 GeV)
 - introduces model dependence, also larger errors due to lower sample purity


40

$\overline{\nu}_{\mu}$ CCQE σ 's on ¹²C only

- To facilitate comparisons with theoretical calculations, CCQE on hydrogen subtracted to form 12 C-only σ (using L-S M_A = 1.02 ± 0.02 GeV)
 - introduces model dependence, also larger errors due to lower sample purity



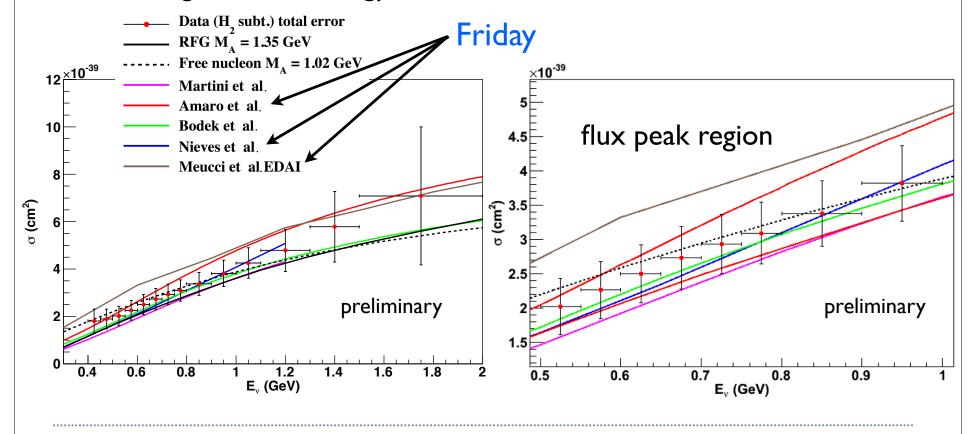
\overline{V}_{μ} CCQE σ 's on ¹²C only

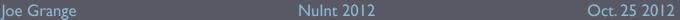
Joe Grange Nulnt 2012 Oct. 25 2012

▶ Further model comparisons: assuming underlying interaction is with independent, at-rest nucleon, can recover incident anti-V energy, unfold to generated energy

$$E_{\bar{\nu}}^{\text{QE}} = \frac{2(M_p - E_B)E_{\mu} - (E_B^2 - 2M_p E_B + m_{\mu}^2 + \Delta M^2)}{2[(M - E_B) - E_{\mu} + p_{\mu}\cos\theta_{\mu}]}$$

42




$\overline{\nu}_{\mu}$ CCQE σ 's on ¹²C only

Joe Grange Nulnt 2012 Oct. 25 2012

▶ Further model comparisons: assuming underlying interaction is with independent, at-rest nucleon, can recover incident anti-V energy, unfold to generated energy

- I. MiniBooNE and \overline{V} -mode beam
 - wrong-sign background
- 2. Neutral-current elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
- 3. Charged-current quasi-elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
 - 4. Combined measurements
 - 5. Summary

BooNE of data!

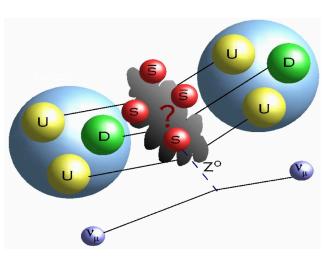
Joe Grange Nulnt 2012 Oct. 25 2012

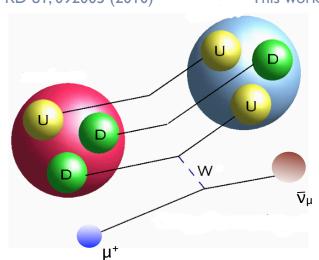
▶ Robust MiniBooNE measurements:

 ν_{μ} NCE

 \overline{V}_{μ} NCE

 ν_{μ} CCQE


 \overline{V}_{μ} CCQE


PRD 82, 092005 (2010)

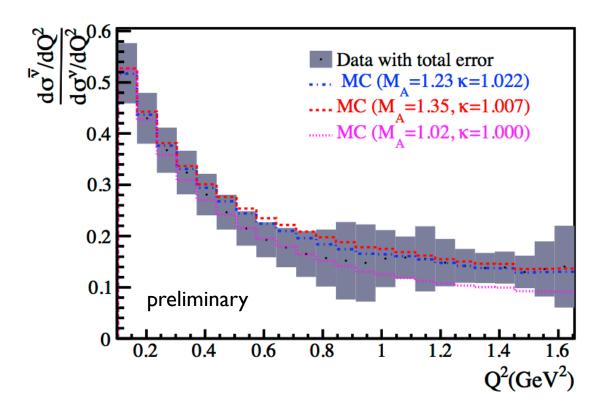
This work

PRD 81,092005 (2010)

This work

- ▶ Can exploit correlated systematics:
 - detector errors: anti- ν_{μ} / ν_{μ} , same channel
 - flux errors: NCE/CCQE in same beam

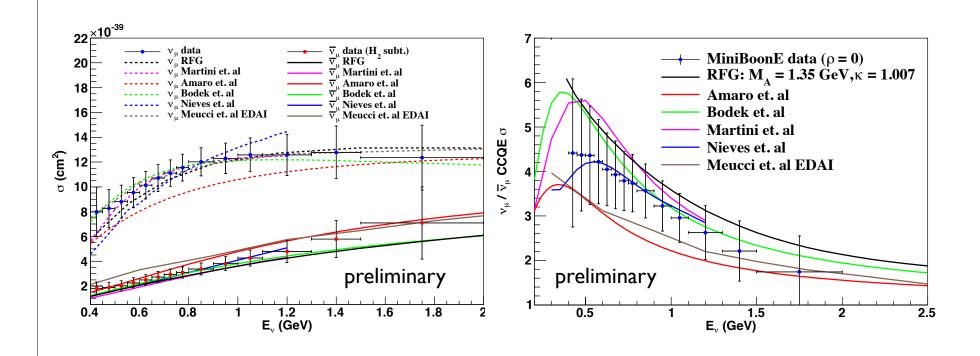
will show combined measurements of both types


NCE ratio: $\overline{V}_{\mu} / V_{\mu}$

Oct. 25 2012

Joe Grange NuInt 2012

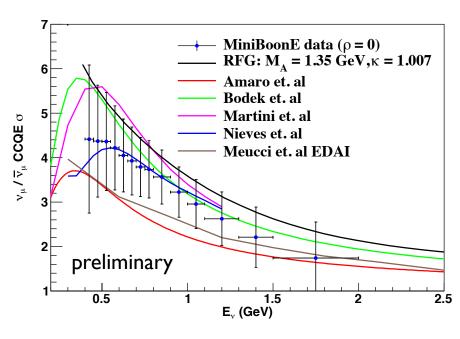
- Carefully evaluated correlated uncertainties implemented
 - biggest gain in light propagation model

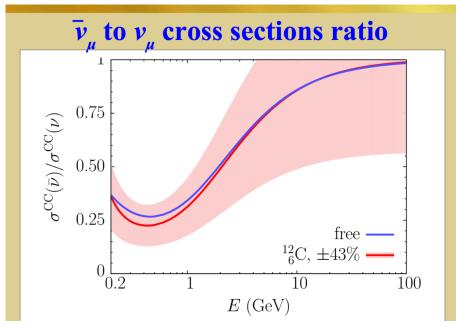

CCQE: ν_{μ} / $\overline{\nu}_{\mu}$

Joe Grange Nulnt 2012 Oct. 25 2012

Correlations not yet evaluated

- ratio measurement will only get better



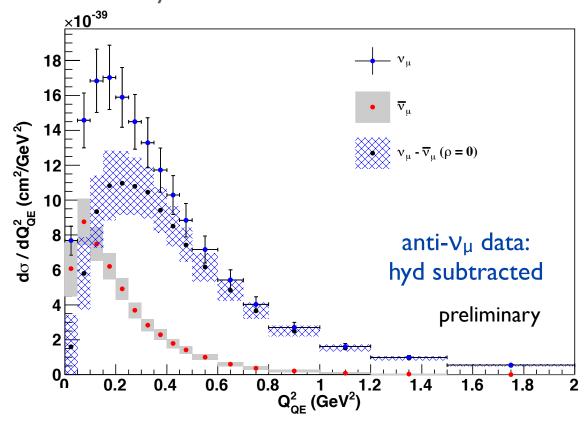

CCQE: ν_{μ} / $\overline{\nu}_{\mu}$

Joe Grange Nulnt 2012 Oct. 25 2012

• (Inverted) comparison to earlier prediction

A. Ankowski talk

CCQE: ν_{μ} - $\overline{\nu}_{\mu}$

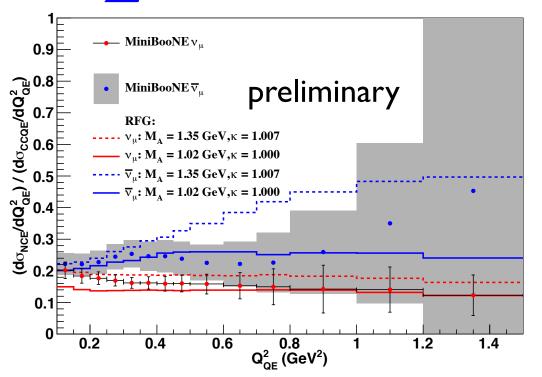


Oct. 25 2012

Joe Grange NuInt 2012

ightharpoonup Difference as a function of Q_2^{QE}

- again, correlations not yet taken into account


NCE/CCQE ratio for V_{μ} , \overline{V}_{μ}

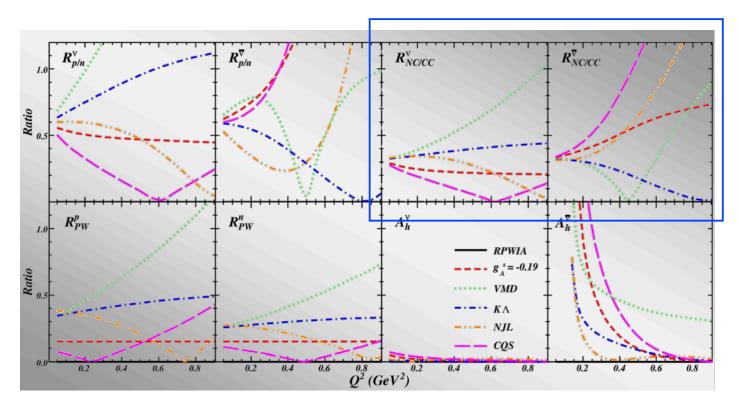
Joe Grange Nulnt 2012

▶ Recall exp't definitions of Q²QE very different here: hadronic vs. leptonic observations

$$Q_{QE,\text{NCE}}^2 = 2m_N \sum T_N \quad Q_{QE,\text{CCQE}}^2 = 2E_{\nu}^{QE}(p_{\mu}\cos\theta_{\mu} - m_{\mu}) + m_{\mu}^2$$

V_μ ratio: PRD 82, 092005 (2010)

Oct. 25 2012


NCE/CCQE ratio for V_{μ} , \overline{V}_{μ}

Oct. 25 2012

Joe Grange NuInt 2012

▶ Another on-the-fly comparison

N. Jachowicz talk

Joe Grange

- I. MiniBooNE and ∇-mode beam
 - wrong-sign background
- 2. Neutral-current elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
- 3. Charged-current quasi-elastic measurement
 - reconstruction + selection
 - cross-section calculation
 - results
 - 4. Combined measurements
 - 5. Summary

52

Summary

- MiniBooNE has analyzed > 90% of neutrino mode data, and today's analysis brings the total in anti-neutrino mode to > 80%
- New anti-neutrino CCQE data favor high normalization and harder momentum transfer spectrum compared to expectation associated with $M_A = 1.0$ GeV. NCE data favors higher normalization.
- Papers from both analyses forthcoming

Summary

Joe Grange Nulnt 2012 Oct. 25 2012

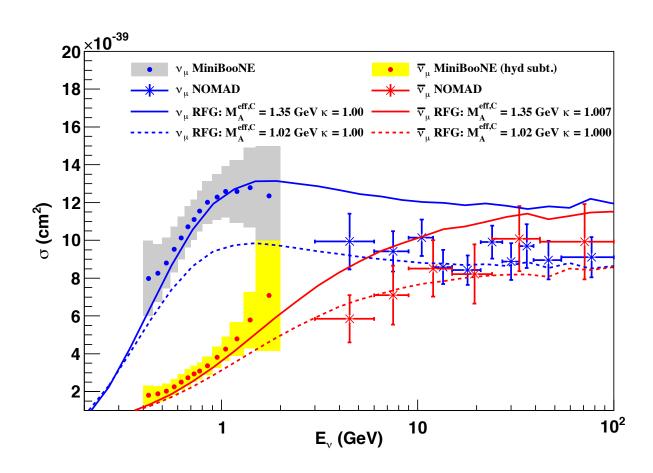
MiniBooNE has analyzed > 90% of neutrino mode data, and today's analysis brings the total in anti-neutrino mode to > 80%

 New anti-neutri momentum tran with M_A = 1.0 G

Papers from bot

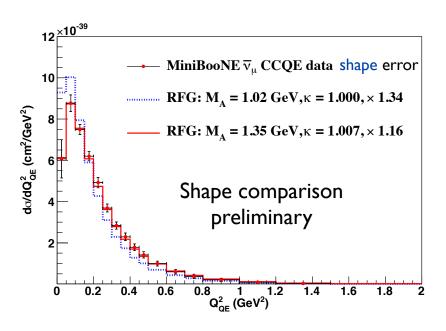
on and harder ion associated ation.

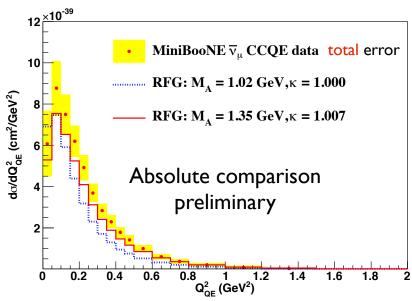
Backup


Joe Grange Nulnt 2012 Oct. 25 2012

55

Comparison to NOMAD data


$\overline{\nu}_{\mu}$ CCQE σ 's on ¹²C only



Oct. 25 2012

Joe Grange Nulnt 2012

• Under same assumptions on underlying interaction, can calculate " Q^2_{OE} "

• Again, data prefers higher normalization, harder spectrum compared to expectations with $M_A = 1.0 \text{ GeV}$

μ- capture wrong-sign measurement

Joe Grange

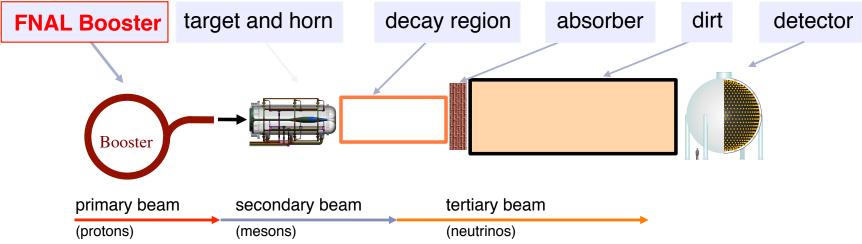
Nulnt 2012

Oct. 25 2012

Due to μ^- nuclear capture (~8% in min. oil), fewer V- induced CC events lead to a decay electron. By adjusting the V and anti-V predictions, find a V flux factor α_V and anti-V rate scale $\alpha_{\overline{V}}$

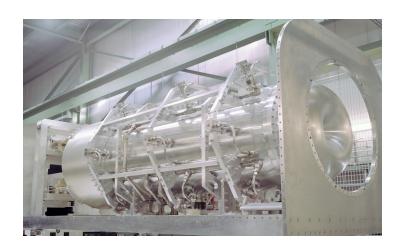
$$\mu + e^{\text{data}} = \left(\alpha_{\nu} \nu^{\mu+e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu+e}\right)^{\text{MC}}$$

$$\mu \text{ only}^{\text{data}} = \left(\alpha_{\nu} \nu^{\mu \text{ only}} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu \text{ only}}\right)^{\text{MC}}$$

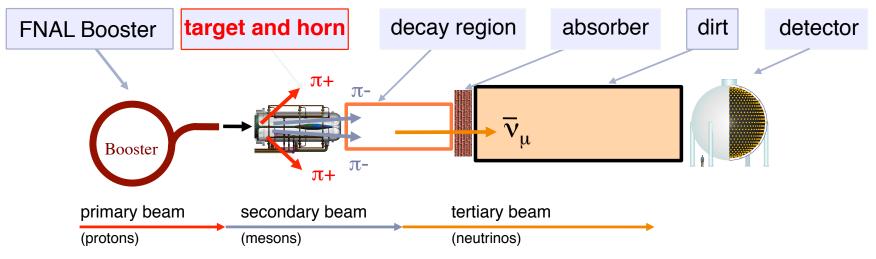

Booster Neutrino Beam

Joe Grange Nulnt 2012 Oct. 25 2012

8.9 GeV/c momentum protons extracted from Booster incident on beryllium target



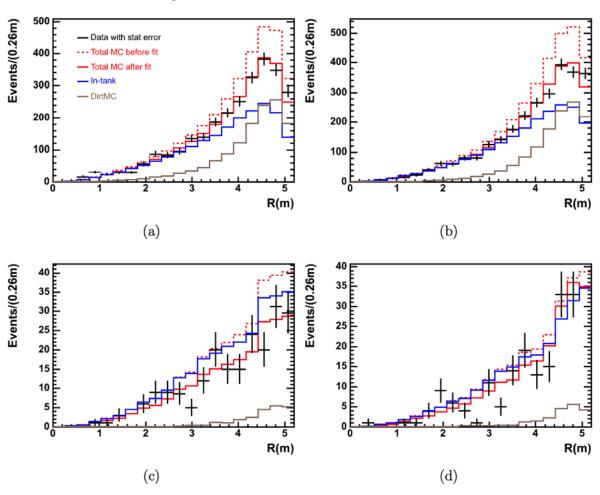
Booster Neutrino Beam



Joe Grange Nulnt 2012 Oct. 25 2012

Magnetic horn with reversible polarity focuses either neutrino or anti-neutrino parent mesons

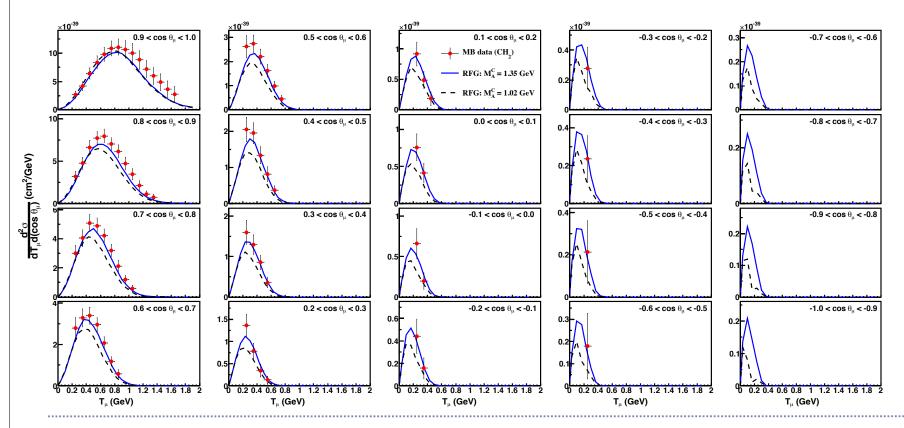
("neutrino" vs "anti-neutrino" mode)


NCE dirt background

Oct. 25 2012

Joe Grange NuInt 2012

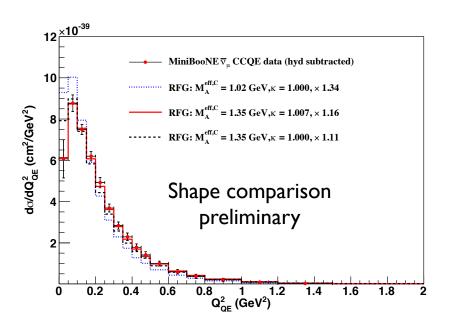
Example of radius fits in E bins

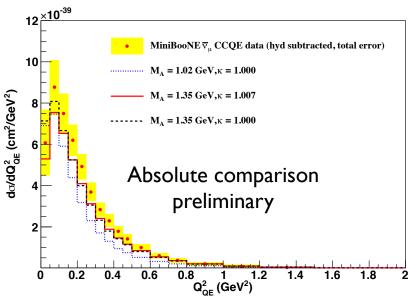


CH₂ comparison to RFG

NuInt 2012 Oct. 25 2012 Joe Grange

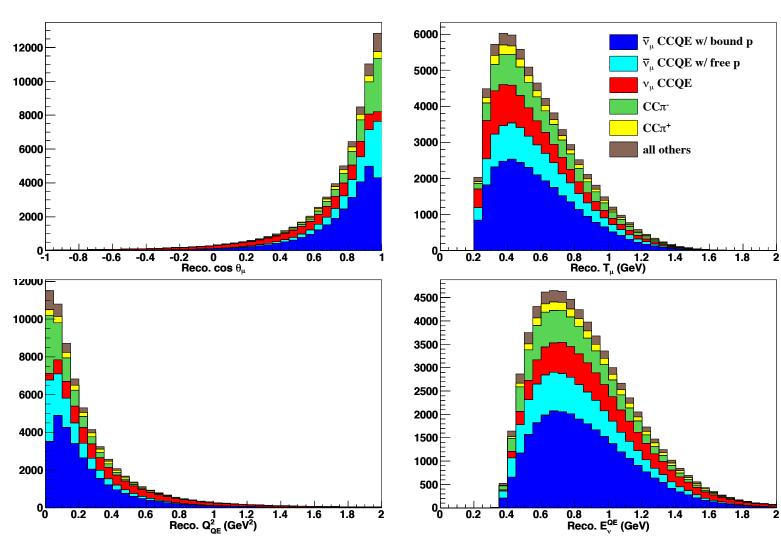
- ▶ Data shape favors high effective axial
 ▶ Total uncertainty shown here mass
 - data $\sim 10\%$ high of $M_A = 1.35$ GeV

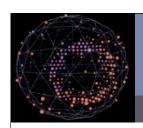



What does K do?

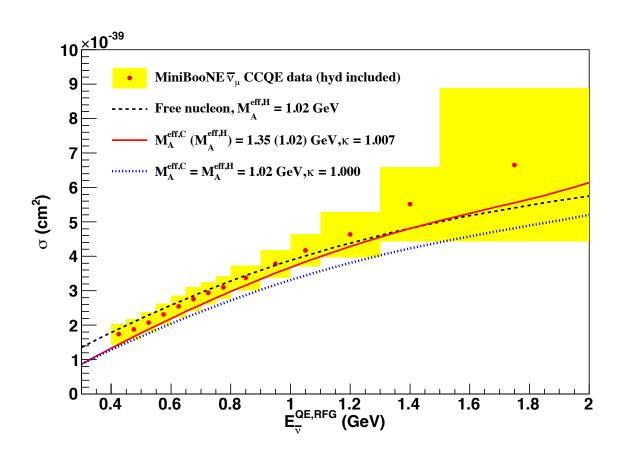
Joe Grange Nulnt 2012 Oct. 25 2012

▶ Small value of K (1.007) does appreciably affect low Q²QE

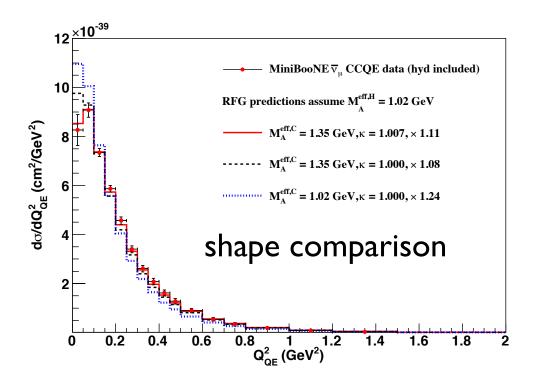




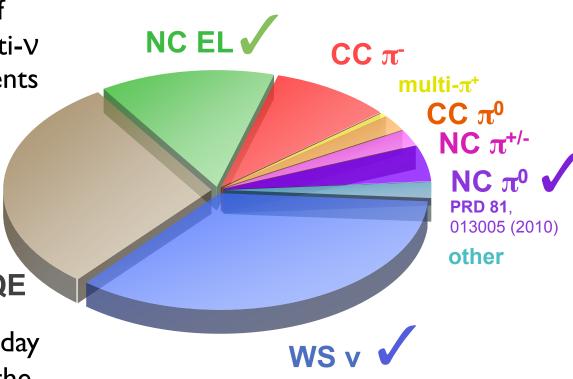
\overline{V}_{μ} sample composition



Total σ: CH₂



Single-differential $d\sigma/dQ^2_{QE}$: CH_2


∇-mode rate

Joe Grange NuInt 2012

Oct. 25 2012

▶ Robust measurements of wrong-signs allow for anti-V CCQE, NCE measurements

Measurements shown today $(V_{\mu}, CCQE, NCE)$ bring the measured rate for anti-V mode to 83%

PRD 84, 072005 (2011)

Scattering formalism

Joe Grange

Nulnt 2012

Oct. 25 2012

Use Llewelyn-Smith expressions for elastic scattering on free nuclei

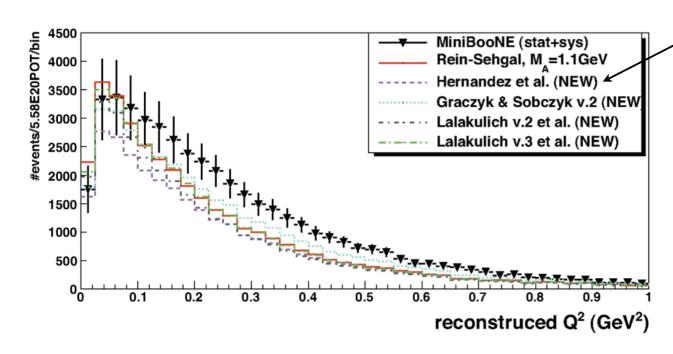
$$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_V^2} \left[A(Q^2) \pm B(Q^2) \times \left(\frac{s-u}{M^2}\right) + C(Q^2) \times \left(\frac{s-u}{M^2}\right)^2 \right]$$

Phys. Rep. 3, 261 (1972)

- A, B, C functions of vector and axial form factors
- Form factors determined by external data (electron scattering, β decay), this leaves neutrino experiments one free parameter: the axial mass M_A
- increased $M_A \rightarrow$ normalization increase, harder Q^2 spectrum
- Bound nucleon targets treated as independent particles subject to binding energy and global Fermi momentum "Relativistic Fermi Gas (RFG)"
 - values set by (e,e') scattering data

Nucl. Phys. B43, 605 (1972)

▶ Empirical Pauli blocking scale K



More π models

Joe Grange Nulnt 2012 Oct. 25 2012

Phys. Rev. D **76**, 033005 (2007).

